Rethinking Communication
Abstractions

Thomas Hines, Anthony Skjellum, Purushotham Bangalore
askjellum@tntech.edu

FIM Tennessee

\¢{ TECH

Center for Understandable, Performant Exascale Communication Systems

mailto:askjellum@tntech.edu

Preview

Application

« New performant primitives are needed

well beyond what MPI| can do... driven Beyond Performance Portability MPI
by our experience and community best il _brares coence
practices we’ve discovered B?\}{S[‘d BeMyg?d Adl\\:l:r:ce Adl\\fl:r:ce
« Low-level — implementer-facing
« High-level — library and application facing Beyond | Beyond

MPI MPI

« C isn’t a sufficient interface anymore for
optimizing — C++

« We will explain aspects of “Beyond MPI” as
our strategy

T
CUP
ECS

Verbs LibMP

Portals UCX LibFabric

Tennessee
TECH

Center for Understandable, Performant Exascale Communication Systems

Updated 5-year Project Roadmap

- Beyond MPIl goals in FYs 4 and 5
- MPIO, MPI| Advance, Higher-level Abstractions

PY 2020-21 PY 2021-22 PY 2023-24 PY 2024-2025

Partition/Neighbor Comm. GPU Supp

Compilation of principles for - A
— o Gl s Spec. of Integrated Communication Primitives

Abstraction
Development

Testing of integrated primitives in lab
settings (xRage, Trilinos, etc.)

Application

Optimization
AMG, AMR, Particle Push in Lab C#des

GPU Support Partitioned Communication —
MPI Advance Initial Release Locality-Aware GPU Collectives Partitioned Collectives MPIX Integrated Primitives

ExaMPI Infrastructure

Research
Infrastructure and
Outreach

FIM Tennessee

\¢{ TECH

Center for Understandable, Performant Exascale Communication Systems

Beyond MPIl—Leaving MPI Behind (or Aside)

MPI has provided a lot of great success
New abstractions are needed, forum is too slow and conservative
MPI will remain in the framework role of runtime and non-performance critical APIs

Two kinds of APls are needed based on our findings
« Application-facing + performance portable APIs for message passing and data reductions
« Implementation-facing, low-level APls in groupings to support semantics that lightly abstracts the
various, complex network/accelerator/CPU

FIM Tennessee

\¢{ TECH

Center for Understandable, Performant Exascale Communication Systems

This talk is about

« MPIO---low-level APls for really high performance (down-up)

« Rethinking datatypes (more performance and offload potential)

« High-level abstractions, including some based on community best practices (e.g., Token
library)

« Achieving high performance and recovering portability

- Working alongside MPI

T
CUP
ECS

Tennessee
w0

TECH

Center for Understandable, Performant Exascale Communication Systems

We love MPI, but we need more (and less)...

« +Persistent collective communication is a good addition in MPI-4

« +Compromises in new APIs we’ve helped put in MPI-4 --- partitioned point-to-point
communication is a great start but has issues

« -Derived Datatypes are a slow mechanism

« -Communicators pose high overheads when working with neighborhood collectives

« -General send/receive semantics bad for accelerators

« -Asynchronous notification and triggering absent in MPI still

« --Full MPIl semantics and too much or mismatch in various ways

T
CUP
ECS

TECH

Tennessee
w0

Center for Understandable, Performant Exascale Communication Systems

Lessons Learned

« Two-sided “look and feel” important/good for programmers

« Efficient semantics for 1-sided implementation essential — channels,
persistence, partitions

« MPI doesn'’t really fit the accelerator programming model

« C++ native interfaces needed — for performance, integration, productivity

T
CUP

ECS Center for Understandable, Performant Exascale Communication Systems

i

Tennessee
TECH

MPI will still orchestrate the application, but...

« New abstractions will run in performance-critical regions

« High-level abstractions will be designed for performance portability and a degree of
application domain specificity

« Low-level primitives (aka MPI0) will be performant, but different groups will work better on
different hardware

« High-level abstractions used by implementers choose which MPIO approaches meet their
performance and semantic needs

T
CUP
ECS

TECH

Tennessee
w0

Center for Understandable, Performant Exascale Communication Systems

Low-level Primitives (MPIO0)

Tennessee
w0

TECH

Center for Understandable, Performant Exascale Communication Systems

MPIO at a glance

CUP
ECS

Work within a standard MPI execution environment

C/C++ facing APls (small sets)

Flavors — semantic complexity varied for different use cases (e.g., static flavor)
Buffer/memory coupled with transfers including memory kinds

Point-to-point channels (partitions emphasized)

Make it easy for users to compose operations and trigger sequences/graphs [also considered
in MPI-5 standard]

Communicators reconsidered — maybe replaced, achieve separation through point-to-point and
collective channels ...

MPI message passing APls may also be implemented over MPIO abstractions in future

Tennessee
w0

TECH

Center for Understandable, Performant Exascale Communication Systems

MPIO — Static

For known buffers and a static communication pattern
Move as much as possible into the setup phase and out of the main loop

Receive not needed — the receive buffer is known at setup
No such thing as an unexpected message

Tennessee
w0

TECH

Center for Understandable, Performant Exascale Communication Systems

MPI0 — Static Interface

A transfer is the basic unit, set up once
Setup_send(buffer, size, dest, tag, &transfer)
Setup_recv(buffer, size, src, tag, &transfer)
Setup_wait(transfer)

A transfer can be triggered over and over again (send side)
Trigger(transfer, msg_size) — msg_size must be <= the setup size
Wait(transfer, &size)

Test(transfer, &size)

Wait or Test is called on both the sender and the receiver side

FIM Tennessee

\¢{ TECH

Center for Understandable, Performant Exascale Communication Systems

MPI0 — Static Implementation

Implemented using IB Verbs

Send boils down to RDMA put
Matching, pinning, RDMA address transfer all done during setup

Tested in Pulse on Lassen
Whole app 3%-5% faster than Spectrum MPI (1 rank per node, 27 nodes)
Test case is a simple, structured problem

FIM Tennessee

\¢{ TECH

Center for Understandable, Performant Exascale Communication Systems

MPIO — Dynamic

The Dynamic library controls the buffers
Send side

Acquire buffer, pack into buffer, send
Destructive send — application cannot reuse buffer

Receive side
Application does not give buffer; library gives the application a buffer
No matching
Get the next message in (any source, any tag)

FIM Tennessee

\¢{ TECH

Center for Understandable, Performant Exascale Communication Systems

High-level Abstractions

Datatypes
Tokens
MPIl+Kokkos

Tennessee
w0

TECH
Center for Understandable, Performant Exascale Communication Systems

Irregular Data Communication Abstractions

10° 5
] Generic Pack Overhead
- Need to efficiently communicate and 10-1]
-COmpLIJte (getg reduce or gather) GPUDirect non-contiguous datatypes
irregular data 102
- Generic datatypes can be faster for g | Kokkos-packed buffers
small irregular data S o 4
- Generic datatypes prohibitively slow for £ _,_,.j__'j;;'- i
large irregular data E - & /
. . "~ 10744 B ™ A
Need fast application-customized i /K/ | launch
.] 0 ernel launc
datatype abstractions! ol overhead
- Support effective collectives : oSS tatat
- Manage communication memory costs il o0 COTTIgHORS AaTalypes
2'3 2'6 2'9 21'12 21'15 2]{8 221 224

Bytes

Tennessee

TECH

Center for Understandable, Performant Exascale Communication Systems

New Abstraction: Active Datatypes

|dea — application provides custom packing code that can be tightly integrated with
communication

Signpost: Applications already write fused packing loops
Simple and faster than highly-optimized datatype generic implementations
Lack benefits of tight integration with the communication infrastructure

Challenges: integrate application packing with communication system
1. Preserve/manage parallelism granularity through packing and communication
2. Persist application accelerator packing code to avoid kernel launch overheads

FIM Tennessee

\¢{ TECH

Center for Understandable, Performant Exascale Communication Systems

Preserving Fine-Grain Parallelism

Pready -> PArrived Pready ----- > PArrived Pready -> PArrived
. Maintainin? parallelism Agp"?"’.‘tion Al el
pa?moun to maximize artition Partition
errormance ‘i ~ati L
P . Fine-grain application Appllggtlon Appllgqtlon
parallelism creates/ S ilen Packing Unpacking Partition
. %%r:zumrzﬁiscgﬁéi Appliga_ltion Partition Partition Anplication
system aggrel alf[eS to Partition v Packing Unpacking Partition
manage parallelism o - "
o thegwiFr)e ' Application 4 Partition Partition Application
. Partition ‘ : - iti
- Enabling management of) Packing Unpacking Fartition
parallelism and™ Application Partition Partition Application
aggregation essential Partition Packing Unpacking Partition
- Partitioned concept Aoplicati Partiti Partiti o
L WA . pplication artition artiuon Application
|
enables this in packing! Thread .

- Manage parallelism at all
levels (end-to-end)

T
CUP
ECS

Application Application
Thread Thread

Host 1 Network Host 2

FIM Tennessee

\¢{ TECH

Center for Understandable, Performant Exascale Communication Systems

Token Library Model--- Not in MPI

« Best practices of application communication community
« Usable and performant, can be faster if not layered on MPI
« Key aspects
« Service to locate where data goes (unknown senders or unknown receivers)

Efficient collective data transfer
« Neighborhood-type reductions on classes of messages received

« Common abstraction for over a decade in NNSA-code helper libraries (L7, Token)

* Not close to anything under consideration by the MPIl Forum

« We will create a performance-portable abstraction with efficient implementation using
MPIO (prevent reinvention of wheel in many apps)

FIM Tennessee

\¢{ TECH

Center for Understandable, Performant Exascale Communication Systems

Kokkos+MPI Goals

. To improve the general programming experience when
using MPI1 with Kokkos.

. To minimize the possibility of bugs from MPI|+Kokkos
programs

. To enable significant optimizations for MPI+Kokkos at the
language binding level or below

. Kokkos offers the opportunity to move beyond legacy MPI

Tennessee
w0

TECH

Center for Understandable, Performant Exascale Communication Systems

Kokkos + ExaMPI| Implementation

e« The template parameters decide the datatype information for View operations
e MPI _Send’s counterpart, MPI_Recv receives the Payload send in MPIl_Send, then
wraps that in a View object and sends that to the pointer passed as a parameter.

e Moving soon to
MPI1_Send<View_t>(View _t * buf, int dest, int tag, MPl Comm comm)

MPI_Recv<View_ t>(View t * buf, int source, int tag, MPI Comm comm)

with type and structural inference from view

Kokkos: :View< >check(“check”, n);
MPI Kokkos Send<Kokkos::View<int*>, int>(&check, n, MPI INT, 0, 0, MPI_COMM WORLD) ;

int* check_arr = check.data();
MPI Send(check arr, n, MPI INT, O, 0O, MPI COMM WORLD) ;

T
CUP
ECS

= w N -

Tennessee
w0

TECH

Center for Understandable, Performant Exascale Communication Systems

Integration

FIM Tennessee

\¢{ TECH

Center for Understandable, Performant Exascale Communication Systems

Integrated Primitives—Work for YRs 4&5

« Pulling our abstractions and primitives into +« Mid-level
best practices we've discovered « C++ API alternatives with Kokkos

- Top-down integration
. Collectives « Removing mid-level code

. Token APIs (Topology discovery, » Ability to push kernels down into GPU,

management, partitions, new datatype DPU

abstractions) . Down-up
MPIO — fast transfers
Support for tokens
Support for topology

FIM Tennessee

\¢{ TECH

Center for Understandable, Performant Exascale Communication Systems

Summary

New performant primitives are needed well beyond what MPI can do... driven by our
experience and community best practices we’ve discovered

« We've learned that new abstractions/primitives are needed

« Low-level — simpler semantics, early evidence of greater performance; implementer facing
« High-level — collective operations that reflect applications; library and application facing (Token
library abstraction as efficient, app facing API; Datatypes — need to replace with effective
alternatives)
Connect with Kokkos+ExaMPI work to improve abstractions
(see Evan Suggs’ poster) — C isn’t a sufficient interface anymore for optimizing

Next steps include
« Resolving lack of vendor-independent GPU-triggering comm
 Integrating low-level primitives and high-level abstractions into more use cases/apps/libraries
- Demonstrating greater performance advantages

FIM Tennessee

\¢{ TECH

Center for Understandable, Performant Exascale Communication Systems

Thank youl!

Tennessee
w0

TECH

Center for Understandable, Performant Exascale Communication Systems

