
Rethinking Communication 
Abstractions

Thomas Hines, Anthony Skjellum, Purushotham Bangalore
askjellum@tntech.edu 

1

mailto:askjellum@tntech.edu


Preview

• New performant primitives are needed 
well beyond what MPI can do… driven 
by our experience and community best 
practices we’ve discovered

• Low-level – implementer-facing
• High-level – library and application facing

• C isn’t a sufficient interface anymore for 
optimizing – C++

• We will explain aspects of “Beyond MPI” as 
our strategy

2

Application
Beyond 

MPI

Beyond 
MPI

Beyond 
MPI

MPI0

Portals

Performance Portability 
Libraries

Beyond 
MPI

Beyond 
MPI

MPI0

UCX

MPI0

MPI0

MPI0

LibFabric

MPI 
Advance

MPI0

MPI0

Verbs

MPI 
Advance

MPI 
Advance

MPI

MPI0

LibMP



Updated 5-year Project Roadmap

• Beyond MPI goals in FYs 4 and 5
• MPI0, MPI Advance, Higher-level Abstractions

PY 2020-21 PY 2021-22 PY 2022-23 PY 2023-24 PY 2024-2025

         

         

         

Partitioned P2P GPU SupportPartitioned P2P Prototype

Research Areas

Abstraction 
Development

Application 
Optimization

Research 
Infrastructure and

Outreach

Neighbor Comm. 
OptimizationNeighbor Comm. Prototyping Partition/Neighbor 

Comm. Integration

Partition/Neighbor Comm. GPU Support

Other Lab Regular HalosHIGRADFiesta/Comb 

AMG in ApplicationsHYPRECLAMR

Partitioned CommunicationGPU SupportExaMPI Infrastructure

Partitioned CollectivesLocality-Aware GPU CollectivesMPI Advance Initial Release

Compilation of principles for 
new abstractions

AMG, AMR, Particle Push in Lab Codes

Spec. of Integrated Communication Primitives

MPIX Integrated Primitives

Testing of integrated primitives in lab 
settings (xRage, Trilinos, etc.)

Integrated PrimitivesMPI0 Primitives

3



Beyond MPI—Leaving MPI Behind (or Aside)

• MPI has provided a lot of great success
• New abstractions are needed, forum is too slow and conservative
• MPI will remain in the framework role of runtime and non-performance critical APIs
• Two kinds of APIs are needed based on our findings

• Application-facing + performance portable APIs for message passing and data reductions 
• Implementation-facing, low-level APIs in groupings to support semantics that lightly abstracts the 

various, complex network/accelerator/CPU 

4



This talk is about 

• MPI0---low-level APIs for really high performance (down-up)
• Rethinking datatypes (more performance and offload potential)
• High-level abstractions, including some based on community best practices (e.g., Token 

library)
• Achieving high performance and recovering portability 
• Working alongside MPI

5



We love MPI, but we need more (and less)…
• +Persistent collective communication is a good addition in MPI-4
• +Compromises in new APIs we’ve helped put in MPI-4 --- partitioned point-to-point 

communication is a great start but has issues
• -Derived Datatypes are a slow mechanism
• -Communicators pose high overheads when working with neighborhood collectives
• -General send/receive semantics bad for accelerators
• -Asynchronous notification and triggering absent in MPI still
• --Full MPI semantics and too much or mismatch in various ways

6



Lessons Learned

• Two-sided “look and feel” important/good for programmers
• Efficient semantics for 1-sided implementation essential – channels, 

persistence, partitions
• MPI doesn’t really fit the accelerator programming model
• C++ native interfaces needed – for performance, integration, productivity

7



MPI will still orchestrate the application, but…
• New abstractions will run in performance-critical regions
• High-level abstractions will be designed for performance portability and a degree of 

application domain specificity 
• Low-level primitives (aka MPI0) will be performant, but different groups will work better on 

different hardware
• High-level abstractions used by implementers choose which MPI0 approaches meet their 

performance and semantic needs 

8



Low-level Primitives (MPI0)

9



MPI0 at a glance

• Work within a standard MPI execution environment
• C/C++ facing APIs (small sets)
• Flavors – semantic complexity varied for different use cases (e.g., static flavor)
• Buffer/memory coupled with transfers including memory kinds
• Point-to-point channels (partitions emphasized)
• Make it easy for users to compose operations and trigger sequences/graphs [also considered 

in MPI-5 standard]
• Communicators reconsidered – maybe replaced, achieve separation through point-to-point and 

collective channels … 
• MPI message passing APIs may also be implemented over MPI0 abstractions in future

10



MPI0 – Static

• For known buffers and a static communication pattern
• Move as much as possible into the setup phase and out of the main loop
• Receive not needed – the receive buffer is known at setup

• No such thing as an unexpected message

11



MPI0 – Static Interface

• A transfer is the basic unit, set up once
• Setup_send(buffer, size, dest, tag, &transfer)
• Setup_recv(buffer, size, src, tag, &transfer)
• Setup_wait(transfer)

• A transfer can be triggered over and over again (send side)
• Trigger(transfer, msg_size) – msg_size must be <= the setup size
• Wait(transfer, &size)
• Test(transfer, &size)

• Wait or Test is called on both the sender and the receiver side

12



MPI0 – Static Implementation

• Implemented using IB Verbs
• Send boils down to RDMA put

• Matching, pinning, RDMA address transfer all done during setup

• Tested in Pulse on Lassen
• Whole app 3%-5% faster than Spectrum MPI (1 rank per node, 27 nodes)
• Test case is a simple, structured problem

13



MPI0 – Dynamic

• The Dynamic library controls the buffers
• Send side

• Acquire buffer, pack into buffer, send
• Destructive send – application cannot reuse buffer

• Receive side
• Application does not give buffer; library gives the application a buffer
• No matching
• Get the next message in (any source, any tag)

14



High-level Abstractions

15

Datatypes
Tokens

MPI+Kokkos



Irregular Data Communication Abstractions

• Need to efficiently communicate and 
compute (e.g. reduce or gather) 
irregular data

• Generic datatypes can be faster for 
small irregular data

• Generic datatypes prohibitively slow for 
large irregular data

• Need fast application-customized 
datatype abstractions!

• Support effective collectives
• Manage communication memory costs

GPUDirect non-contiguous datatypes

GPUDirect contiguous datatypes

Kokkos-packed buffers 

Kernel launch 
overhead

Generic Pack Overhead

16



New Abstraction: Active Datatypes

• Idea – application provides custom packing code that can be tightly integrated with 
communication

• Signpost: Applications already write fused packing loops
• Simple and faster than highly-optimized datatype generic implementations
• Lack benefits of tight integration with the communication infrastructure

• Challenges: integrate application packing with communication system
1. Preserve/manage parallelism granularity through packing and communication
2. Persist application accelerator packing code to avoid kernel launch overheads

17



Preserving Fine-Grain Parallelism

• Maintaining parallelism 
paramount to maximize 
performance

• Fine-grain application 
parallelism creates/ 
consumes data

• Communication 
system aggregates to 
manage parallelism 
on the wire

• Enabling management of 
parallelism and  
aggregation essential

• Partitioned concept 
enables this in packing!

• Manage parallelism at all 
levels (end-to-end) 

Application 
Partition

Packing 
Partition

Application 
Partition

Application 
Partition

Application 
Partition

Application 
Partition

Application 
Thread

Packing 
Partition

Packing 
Partition

Packing 
Partition

Application 
Thread

Pkt
Pkt

Pkt
Pkt

Unpacking 
Partition

Unpacking 
Partition

Unpacking 
Partition

Unpacking 
Partition

Application 
Partition

Application 
Partition

Application 
Partition

Application 
Partition

Application 
Partition

Application 
Thread

Application 
Thread

Pready -> PArrived Pready   ----->   PArrived Pready -> PArrived

Pkt
Pkt

pkt
Pkt

Host 1 Host 2Network

18



Token Library Model--- Not in MPI

• Best practices of application communication community
• Usable and performant, can be faster if not layered on MPI
• Key aspects

• Service to locate where data goes (unknown senders or unknown receivers)
• Efficient collective data transfer
• Neighborhood-type reductions on classes of messages received

• Common abstraction for over a decade in NNSA-code helper libraries (L7, Token)
• Not close to anything under consideration by the MPI Forum
• We will create a performance-portable abstraction with efficient implementation using 

MPI0 (prevent reinvention of wheel in many apps)

19



Kokkos+MPI Goals

● To improve the general programming experience when 
using MPI with Kokkos.

● To minimize the possibility of bugs from MPI+Kokkos 
programs

● To enable significant optimizations for MPI+Kokkos at the 
language binding level or below

● Kokkos offers the opportunity to move beyond legacy MPI

20



Kokkos + ExaMPI Implementation

● The template parameters decide the datatype information for View operations
● MPI_Send’s counterpart, MPI_Recv receives the Payload send in MPI_Send, then 

wraps that in a View object and sends that to the pointer passed as a parameter.
● Moving soon to

MPI_Send<View_t>(View_t * buf, int dest, int tag, MPI Comm comm)

MPI_Recv<View_t>(View_t * buf, int source, int tag, MPI Comm comm)

           with type and structural inference from view

21

1 Kokkos::View<int*>check( ”check”, n );
2 MPI_Kokkos_Send<Kokkos::View<int*>, int>(&check, n, MPI_INT, 0, 0, MPI_COMM_WORLD);
3 int* check_arr = check.data();
4 MPI_Send(check_arr, n, MPI_INT, 0, 0, MPI_COMM_WORLD);



Integration

22



Integrated Primitives—Work for YRs 4&5

• Pulling our abstractions and primitives into 
best practices we’ve discovered

• Top-down 
• Collectives
• Token APIs (Topology discovery, 

management, partitions, new datatype 
abstractions)

• Mid-level
• C++ API alternatives with Kokkos 

integration
• Removing mid-level code
• Ability to push kernels down into GPU, 

DPU

• Down-up
• MPI0 – fast transfers
• Support for tokens
• Support for topology

23



Summary
• New performant primitives are needed well beyond what MPI can do… driven by our 

experience and community best practices we’ve discovered
• We’ve learned that new abstractions/primitives are needed

• Low-level – simpler semantics, early evidence of greater performance; implementer facing
• High-level – collective operations that reflect applications; library and application facing (Token 

library abstraction as efficient, app facing API; Datatypes – need to replace with effective 
alternatives)

• Connect with Kokkos+ExaMPI work to improve abstractions 
(see Evan Suggs’ poster) – C isn’t a sufficient interface anymore for optimizing

• Next steps include
• Resolving lack of vendor-independent GPU-triggering comm
• Integrating low-level primitives and high-level abstractions into more use cases/apps/libraries
• Demonstrating greater performance advantages

24



Thank you!

25


